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Abstract. The hierarchy of correlations is an approximation scheme which per-
mits the study of non-equilibrium phenomena in strongly interacting quantum
many-body systems on lattices in higher dimensions (with the underlying idea
being somewhat similar to dynamical mean-field theory). So far, this method was
restricted to equal-time correlators such as 〈Âµ(t)B̂ν(t)〉. Using the method of
complete induction, we generalize this method to double-time correlators such as
〈Âµ(t)B̂ν(t ′)〉. The hierarchical decoupling scheme permits the evaluation of cor-
relation functions in thermal equilibrium as well as in non-equilibrium settings.
As an application, we study the equilibrium dynamics of correlation functions
and the related light-cone structure of the bosonic Hubbard model in the Mott
insulator phase. Furthermore we address the light-cone structure when the sys-
tem is quenched.
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1. Introduction

The physics of strongly interacting quantum many-body systems is, despite decades of
research, far from being fully understood. Apart from a few exactly solvable models, even
their ground state properties are a subject of ongoing discussions, see, e.g. [1, 2]. Even
more challenging is the investigation of non-equilibrium properties of those interacting
many-body systems.

In the limit of infinite dimensions, the dynamical mean-field theory (DMFT) has
been successfully applied to various problems such as the Mott–Hubbard transition
[3–8] or the non-equilibrium dynamics in Mott insulators [9–14] by mapping the system
to an effective single site (i.e. zero-dimensional) problem.

Furthermore, one-dimensional strongly interacting systems have been studied by
employing exact diagonalization, see, e.g. [15–24], time-dependent density matrix renor-
malization group variational techniques (t-DMRG), see, e.g. [25–27], or Jordan–Wigner
transformations [28–31]. Moreover, exact analytical solutions were used to study non-
equilibrium dynamics [32] and ground state properties. However, the findings for one-
dimensional systems cannot be easily transferred to higher dimensions. For example,
thermalization in higher dimensions is very different from thermalization in one dimen-
sion since for the latter the energy re-distribution cannot occur via two-body collisions
(due to energy and momenta conservation).

For strongly interacting systems in higher dimensions, the methods described above
run into difficulties. For example, the generalization of t-DMRG to higher dimensions
(such as tensor networks) is limited by the exponential scaling with the system size [33],
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especially if correlations spread across the system. For a very similar reason (exponential
scaling of Hilbert space), the method of exact diagonalization is limited to small system
sizes [15–24]. On the other hand, the DMFT is only well controlled in the limit of infinite
dimensions and, due to the mapping to an effective single-site problem, does not capture
energy and momentum transfer of quasi-particles or long-range correlations, see, e.g.
[34].

As an extension of the DMFT methods, various cluster approaches have been
developed which capture all correlations within a finite range (cluster). The coupling of
the cluster to the surrounding lattice can, for example, be included via a self-consistent
embedding in a mean-field, see, e.g. [35, 36]. These cluster extensions of the DMFT
method provide a controlled way of approaching the exact limit by increasing the cluster
size.

In order to take correlations of arbitrarily long range into account, we established
over the last years a perturbative hierarchical method which is valid for large coordin-
ation numbers Z # 1.

Somewhat complementary to the cluster approach, our method captures two-site
correlations of arbitrary range to first order in 1/Z whereas higher-order correlations
among more than two lattice sites are included at higher orders in 1/Z. This method
allows for a systematic study of non-equilibrium properties in strongly interacting sys-
tems in large (but finite) dimensions.

The hierarchical expansion is based on a controlled expansion of the n-point reduced
density matrices into correlated parts. At zeroth order in our expansion, we have the
single-site density matrix,

ρ̂µ = Tr "µ{ρ̂}=O(Z0) , (1)

where Tr "µ denotes the trace over all lattice sites but µ. The correlated part of the
two-site density matrix,

ρ̂corr
µν = Tr "µ "ν{ρ̂}− ρ̂µρ̂ν =O(1/Z) , (2)

scales linearly in 1/Z, the three-point correlator

ρ̂corr
µνλ = Tr "µ "ν "λ{ρ̂}− ρ̂corr

µν ρ̂λ− ρ̂corr
µλ ρ̂ν − ρ̂corr

νλ ρ̂λ− ρ̂µρ̂ν ρ̂λ =O(1/Z2) (3)

scales quadratically, and so on. The time-evolution of the n-point correlations is derived
directly from the von Neumann equations.

The above scaling with powers of 1/Z facilitates a controlled iterative approximation
scheme. The zeroth order O(Z0) can be used to infer the mean-field background. Per-
turbations around this mean-field background can be treated within first order in 1/Z
and yield the quasi-particle excitations and their spectra, etc. Iterating this approxima-
tion scheme further, one may include the back-reaction of the quasi-particle fluctuations
onto the mean-field or derive the interactions between the quasi-particles, etc.

With this expansion, we were able to study quenches across phase boundaries [37],
ground state properties and non-equilibrium dynamics of quantum correlations in the
bosonic and fermionic Hubbard model [38, 39], an analogue for the Sauter–Schwinger
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effect [40], phase boundaries [41] and the Boltzmann dynamics of quasi-particle excita-
tions in strongly interacting systems [42–46].

The derivation of the hierarchy (1)–(3) was based on the real-time evolution of the
system’s density matrix. In the following, we shall extend our hierarchical approach to
double-time correlation functions. As a concrete example, we will apply the method to
the Bose–Hubbard model in the Mott insulating phase.

As will be shown in section 4, the hierarchy for two-time correlation functions can
also be used for double-time Green’s functions. In this context, various decoupling
schemes have been developed and applied, for example, to spin models [47–52] or inter-
acting many-particle systems [53–57]. These decoupling schemes reside on the disregard
of spin fluctuations or correlations among particles. Here we use a decoupling scheme
which is based on the truncation of correlations among lattice sites. The small expan-
sion parameter 1/Z is employed to derive the (truncated) hierarchical equations at a
given order and to specify the error of the decoupling procedure.

2. The double-time hierarchy

We consider quantum many-body systems on a lattice as described by the general
Hamiltonian

Ĥ =−J

Z

∑

µ,ν

TµνX̂
†
µX̂ν +

∑

µ

Ĥµ . (4)

Here µ and ν denote lattice sites while Ĥµ and X̂ν are local (on-site) operators
acting on the local Hilbert spaces associated to those sites. Here, we consider one set
of operators X̂µ only, but it is straight-forward to include multiple sets X̂µ,s labeled by
the additional quantum number s which could be the spin, for example.

The lattice structure is encoded in the adjacency matrix Tµν where Z is the coordin-
ation number, which is assumed to be large Z # 1. Finally, J denotes the coupling
strength between neighboring lattice sites, see the next section for an explicit example.

As a generalization of the hierarchy of correlations in equations (1)–(3) above, we
consider expectation values of operators at two different times t and t ′. For two operators
Âµ(t) and B̂µ(t) acting on the same lattice site, the generalization of equation (1) above
reads

〈Âµ(t)B̂µ(t
′)〉=O(Z0) . (5)

Here we define the time-dependent expectation values of the operators as usual
via 〈. . .〉= tr(. . . ρ̂) where ρ̂ denotes the full density matrix of the total lattice in the
Heisenberg representation.

Considering two operators Âµ(t) and B̂ν(t ′) acting on different lattice sites, we may
define their correlations in the usual way. The central point is that these two-point cor-
relators are also suppressed as O(1/Z), i.e. the generalization of equation (2) reads [58]
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〈Âµ(t)B̂ν(t
′)〉corr = 〈Âµ(t)B̂ν(t

′)〉− 〈Âµ(t)〉〈B̂ν(t
′)〉=O(1/Z) . (6)

In analogy to equation (3), this can be extended to higher-order correlations. The
most general double-time expectation value has the form 〈ÂS(t)B̂S(t ′)〉 where S denotes
the set of |S| lattice sites. For example, for S = {µ,ν}, we have |S|= 2 and we may set
ÂS(t) = Âµ(t)⊗1ν and B̂S(t ′) = B̂ν(t)⊗1µ.

Separating the expectation value 〈ÂS(t)B̂S(t ′)〉 involving |S| lattice sites into the
product of the local on-site expectation values plus the correlations of second and higher
order, up to the order |S|, we find that these correlators are suppressed according to

〈ÂS(t)B̂S(t
′)〉corr =O(Z1−|S|) . (7)

As we show in the appendix using the method of complete induction, the evolution
equations for these correlators conserve this hierarchy (7). Thus, assuming an initial
state ρ̂ which respects this hierarchy (7), it remains valid for finite times t and t ′. One
option is to envisage an initial thermal equilibrium state for a disconnected lattice J =0
where all correlations between lattice sites vanish. Then, by slowly switching on J (t),
we may induce correlations while still staying close to thermal equilibrium, but these
correlators must respect the hierarchy (7).

Employing this hierarchy (7), we may again develop a consistent approximation
scheme based on an expansion into powers of 1/Z. In the next sections, we discuss such
a scheme for the prototypical example of the Bose–Hubbard model.

3. The Bose–Hubbard model

The lattice system under consideration is described by the Bose–Hubbard Hamiltonian
(h̄= 1)

Ĥ =−J(t)

Z

∑

µ,ν

Tµν b̂
†
µb̂ν +

∑

µ

[
U

2
n̂µ(n̂µ− 1)−µ0n̂µ

]
(8)

with the bosonic creation and annihilation operators b̂†µ and b̂ν and the particle number

operator n̂µ = b̂†µb̂µ. The kinetic term is determined by the time-dependent hopping rate
J (t) and the coordination number Z. All bosons are subject to a on-site repulsion U if
a lattice site is occupied with more than one particle. The number operator is denoted
with n̂µ and µ0 is the chemical potential.

We assume the system to be in the Mott insulating phase where the on-site repul-
sion U dominates over the hopping rate J. To order O(Z0), the density matrix of the
system is given by

ρ̂=
⊗

µ

ρ̂µ, ρ̂µ =
∑

n

pn(t)|n〉µ〈n| (9)
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with the on-site probabilities pn(t). In the following, we use the operators P̂ n,m
µ = |n〉µ〈m|

which are sometimes referred to as Hubbard operators [59]. We find for the on-site
expectation values

(i∂t−Un+µ0)〈P̂ n,n+1
µ (t)P̂m+1,m

µ (t ′)〉=O(1/Z) . (10)

The two-site correlation functions with µ &= ν evolve according to

(i∂t−Un+µ0)〈P̂ n,n+1
µ (t)P̂m+1,m

ν (t ′)〉corr

=−J(t)

Z

∑

κ "=µ,ν

Tµκ

√
n+1[pn(t)− pn+1(t)]〈b̂κ(t)P̂m+1,m

ν (t ′)〉corr

− J(t)

Z
Tµν

√
n+1[pn(t)− pn+1(t)]〈b̂ν(t)P̂m+1,m

ν (t ′)〉+O(1/Z2) . (11)

In equation (11) we employed the hierarchy in order to separate three-point expect-
ation values,

〈
P̂ n,n
µ (t)b̂κ(t)P̂

m+1,m
ν (t ′)

〉
= pn(t)

〈
b̂κ(t)P̂

m+1,m
ν (t ′)

〉corr
+O(1/Z2). (12)

Here we restrict our considerations to order O(1/Z) which captures the free quasi-
particle dynamics [42].

In general, depending on the particular observable, higher-order correlations must
also be included. For example, particle-number correlations require three-point correl-
ations as source terms and are therefore of order O(1/Z2) [38, 58].

4. Double-time expectation values in equilibrium

The hierarchical set of equations for two-time expectation values induces a hierarchy
for double-time Green’s functions. This can be used for the computation of equilibrium
correlation functions in the Bose–Hubbard model at finite temperatures. A thermal
expectation value of an operator Ô is defined as

〈Ô〉th =
tr(Ôe−βĤ)

tr(e−βĤ)
, (13)

where β = 1/kbT is the inverse temperature. The retarded Green’s function for the
operators Âµ(t) and B̂ν(t ′) is given by

GAµ,Bν(t, t
′) = 〈〈Âµ(t);B̂ν(t

′)〉〉=−iΘ(t− t ′)〈[Âµ(t), B̂ν(t
′)]〉th , (14)

where we use the double brackets notation 〈〈. . . ; . . .〉〉 [60]. An analogous equation holds
for the advanced Green’s function. We choose Âµ = P̂ n,n+1

µ and B̂µ = P̂m+1,m
µ and find

from equations (10) and (14) the relation

(i∂t−Un+µ0)〈〈P̂ n,n+1
µ (t); P̂m+1,m

µ (t ′)〉〉= δ(t)δm,n(pn− pn+1) . (15)
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An analogous equation of motion for the two-site Green functions can be deduced
from (11). Via the Fourier transforms

〈〈P̂ n,n+1
µ (t); P̂m+1,m

µ (t ′)〉〉=
ˆ ∞

−∞
dω eiω(t−t ′)〈〈P̂ n,n+1; P̂m+1,m〉〉ω (16)

and

〈〈P̂ n,n+1
µ (t); P̂m+1,m

ν (t ′)〉〉corr =

ˆ ∞

−∞
dω eiω(t−t ′) 1

N

∑

k

eik·(xµ−xν)〈〈P̂ n,n+1; P̂m+1,m〉〉corr
k,ω

(17)

we can cast the differential equations for the Green functions into a set of algebraic
equations,

(ω−Un+µ0)〈〈P̂ n,n+1; P̂m+1,m〉〉ω =
δm,n

2π
(pn− pn+1) , (18)

(ω−Un+µ0)〈〈P̂ n,n+1; P̂m+1,m〉〉corr
k,ω

=−JTk

√
n+1(pn− pn+1)

[
〈〈b̂; P̂m+1,m〉〉corr

k,ω −〈〈b̂; P̂m+1,m〉〉ω
]
. (19)

Note that the Fourier transform w.r.t. time is possible as the on-site probabilities in
thermal equilibrium pn are time-independent. Beside the three-point correlation func-
tions, we also neglected the back-reaction of two-site correlations onto the site-local
Green function. Using the spectral decomposition of operators, thermal double-time
correlation functions can be related to Green’s functions [60] via

〈B̂(t)Â(t ′)〉th = i lim
ε→0+

ˆ ∞

−∞
dω

eiω(t−t ′)

eβω − 1

[
〈〈Â;B̂〉〉ω+iε−〈〈Â;B̂〉〉ω−iε

]
. (20)

From equations (18) and (20) we obtain the on-site probabilities for n bosons on a
lattice site in the absence of hopping,

pn =
e−β(U

2 n(n−1)−µ0n)
∑∞

m=0 e
−β(U

2 m(m−1)−µ0m)
. (21)

The relation (19) determines the thermal expectation value of two-site correlation
functions. For the particular case of a hyper-cubic lattice in D dimensions, we find
a closed expression for the two-site correlation functions in terms of modified Bessel
functions Iα(z),

〈b̂†µ(t)b̂ν(t ′)〉corr
th =− 1

π

ˆ
dωP 1

eβω − 1

ˆ ∞

0
dse−s+iω(t−t ′)

× Im



G(ω+ iε)
D∏

j=1

(−1)&xj
µνI&xj

µν

(
JG(ω+ iε)s

D

)

 , (22)
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Figure 1. Time-dependence of the two-time correlation functions |〈b̂†µ(t)b̂µ(t ′)〉corr
th |2

as function of t− = (t− t ′)/2 along the diagonal for a lattice in two dimensions for
unit filling and J/U = 0.1. The parameters are (a) βU = 1, (b) βU = 3, (c) βU = 5,
(d) βU =∞. The red lines indicate the effective light cones which are determined
from the low-temperature approximation of the maximum group velocity vmax.
We see that vmax as well as the amplitude of the correlations decreases with the
temperature of the thermal ensemble.

where *xj
µν = xj

µ−xj
ν is the j -component of the distance between two lattice sites and

the spectral properties are determined by

G(ω) =
∞∑

n=0

(n+1)(pn− pn+1)

ω−Un+µ0
. (23)

The result for the correlation function (22) can be improved self-consistently via the
inclusion of back-reaction terms or correlation functions of order O(1/Z2). However,
the corresponding algebraic equations can then only be solved numerically.

In figure 1 we depict double-time correlation functions for different values of βU .
The density plots show a temperature-dependent light-cone structure [61–64]. For low
temperatures it is viable to neglect occupation numbers n > 2. The dynamics of the cor-
relation functions w.r.t. to the time difference t− = (t− t ′)/2 at unit filling is determined
by the frequencies

Ωk = U − J(1− 3p0)Tk−
√
U 2− 6J(1− 3p0)UTk+ J2(1− 3p0)2T 2

k (24)
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Figure 2. Double-time correlation for |xµ−xν |=
√
2 in two dimensions at different

temperatures. The position of the maximum is shifting with temperature approx-
imately as (t−J)∼ 1/(1− 3p0).

with p0 = p2 = 1/(2+ eβU/2) being the probability to find zero or two particles on a lat-
tice site. The maximum group velocity, given by vmax = maxk|∇kΩk|, determines the
light-cone structure of the correlations which is indicated by the red lines. At zero
temperature, see figure 1(d), the propagation velocity of the correlations is maximal.
In this limit, only the doublon-holon excitations 〈P 10

µ (t)P 12
ν (t ′)〉corr, 〈P 21

µ (t)P 01
ν (t ′)〉corr,

〈P 10
µ (t)P 01

ν (t ′)〉corr, and 〈P 21
µ (t)P 12

ν (t ′)〉corr are relevant. For finite temperatures, we have
1− 3p0 < 1. According to equation (24), this implies a shrinking propagation velocity,
see figure 1(c). If the temperature is increased even further, the approximation of
thermal particle-hole excitations is not valid anymore since also occupation numbers
n > 2 become relevant. In this case the analytical result (24) determines the light-cone
structure rather poorly, see figures 1(a) and (b).

The population of higher excited states is also reflected in the time-evolution of
the correlations at a fixed distance |xµ−xν |. At βU =∞, only eigen-modes of order
O(U) play a role whereas for large temperatures the eigen-modes of order O(nU), n > 1
dominate the time-evolution, see figure 2.

5. Equilibration after a quantum quench

The time-evolution in the limit of zero temperature was discussed previously in [37, 38].
Here we turn to the non-equilibrium dynamics of excitations in the Bose–Hubbard
system after a quantum quench at finite temperatures from J =0 to J > 0. The evolution
of time-local quantities can be deduced from double-time hierarchy for t= t ′ which
coincides with single-time hierarchy in [37]. For large times, the correlation functions
approach quasi-static values which differ from the corresponding thermal expectation
values.
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We assume the system to be initially in a thermal state where all sites are
decoupled from each other and the occupation probability is determined by the thermal
distribution pn , see (21). The hopping rate is switched suddenly from J =0 to a finite
value which is still in the Mott regime J < Jcrit. To zeroth order, the onsite-probabilities
are not altered by the time evolution whereas in first order O(1/Z), the backreaction
of the two-site correlations induces a non-trivial dynamics,

i∂t〈P̂ n,n
µ 〉=−J

Z

∑

κ

Tµκ

[√
n
(
〈P̂ n,n−1

µ b̂κ〉corr −〈b̂†κP̂ n−1,n
µ 〉corr)

−
√
n+1

(
〈P̂ n+1,n

µ b̂κ〉corr −〈b̂†κP̂ n,n+1
µ 〉corr)

]
. (25)

The two-point correlations evolve according to

[i∂t+U(n−m)]〈P̂ n+1,n
µ P̂m,m+1

ν 〉corr

=−J

Z

√
n+1(〈P̂ n+1,n+1

µ 〉− 〈P̂ n,n
µ 〉)

∑

κ "=µ,ν

Tκµ〈b̂†κP̂m,m+1
ν 〉corr

− J

Z

√
m+1(〈P̂m,m

ν 〉− 〈P̂m+1,m+1
ν 〉)

∑

κ "=µ,ν

Tκν〈P̂ n+1,n
µ b̂κ〉corr

− J

Z
Tµν

√
n+1

√
m+1(〈P̂ n+1,n+1

µ 〉〈P̂m,m
ν 〉− 〈P̂ n,n

µ 〉〈P̂m+1,m+1
ν 〉) . (26)

For translational invariant initial conditions, equations (25) and (26) can be
expressed in Fourier space. The lattice momentum k enters the equations (25) and (26)
after the Fourier transform via Jk =

∑
µ Jµνe

ik·(xµ−xν)/Z. For a suitable initial state
we can therefore assume that the Fourier components of the correlation functions
fn,m
k =

∑
µ〈P̂ n,n−1

µ P̂m−1,m
ν 〉eik·(xµ−xν) depend only on Jk via fn,m

k ≡ fn,m(Jk). The dynam-
ics of the correlation functions in d dimensions is then governed by the nonlinear
equations

i∂tPn =−
ˆ J

−J
dΩρd(Ω)Ω

∑

m

√
m+1

[√
n
(
fn,m+1(Ω)− fm+1,n(Ω)

)

−
√
n+1

(
fn+1,m+1(Ω)− fm+1,n+1(Ω)

)]
(27)

and

[i∂t+U(n−m)]fn+1,m+1(Ω)

=−Ω
∞∑

l=0

√
l+1

[√
n+1(Pn+1−Pn)f

l+1,m+1(Ω)

+
√
m+1(Pm−Pm+1)f

n+1,l+1(Ω)

]
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+

ˆ J

−J
dΩ ′ρd(Ω

′)Ω ′
∞∑

l=0

√
l+1

[√
n+1(Pn+1−Pn)f

l+1,m+1(Ω ′)

+
√
m+1(Pm−Pm+1)f

n+1,l+1(Ω ′)

]

−Ω
√
m+1

√
n+1(Pn+1Pm−PnPm+1) . (28)

We introduced here the spectral density for a hypercubic lattice in d dimensions
which can be represented as Fourier transform of Bessel functions,

ρd(Ω) =
1

2π

ˆ ∞

−∞
dseisω

[
J0

(
Js

d

)]d
. (29)

In figure 3 we show the time-evolution in two and three dimensions for various
temperatures. The on-site probabilities are oscillating around their initial thermal value
Pn(t= 0) = pn. The magnitude of the oscillations decreases with increasing temperature.
Similarly, the magnitude of the next-neighbor correlation adopt their maximum value
at zero temperature.

For sufficiently low temperatures, approximate analytical solutions of equations (27)
and (28) can be found when the coupling between the different modes is neglected. As
βU # 1, we can disregard occupations numbers greater than 2 and linearize (28) by
replacing Pn → pn. At unit filling this implies the particle-hole symmetry p0 = p2. When
the system is quenched from the initial state, the oscillations decay in time and the
on-site probabilities approach for t→∞

P0/2,equil = p0 +
1

N

∑

k

4J2T 2
k(1− 4p0 + 3p20)

ω2
k

(30)

with

ωk =
√[

U 2− 6JTk(1− 3p0)U + J2T 2
k(1− 3p0)2

]
. (31)

For the lattice-site correlations we obtain at large times the asymptotic expression

〈b̂†µb̂ν〉equil =
1

N

∑

k

eik·(xµ−xν) 4JTkU(1− 4p0 + 3p20)

ω2
k

. (32)

Equations (30) and (32) confirm our statement that the quench-induced change of
on-site probabilities and correlation functions diminishes with increasing temperature.
As before we estimate the maximum propagation velocity from vmax = maxk|∇kωk|. In
a hyper-cubic lattice in D dimensions with small J/U we have vmax = J(3− 9p0)/D
along the lattice axes and vmax = J(3− 9p0)/

√
D along the diagonals, see figure 4.

We can compare the pre-thermalized state with a corresponding thermal state that
has the same temperature T and filling 〈n̂µ〉. The asymptotic values of the on-site prob-

abilities Pn,equil and the correlation functions 〈b̂†µb̂ν〉equil are deduced from equations (27)
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Figure 3. Equilibration dynamics of the Bose–Hubbard system in two and three
dimensions at unit filling. In the bottom row, we have shown the correlations
between the nearest neighbor sites µ and ν. The system is quenched from a thermal
state at J =0 to J/U = 0.1. In our computation, we did not restrict the occupation
number. Nevertheless, we see that also for finite but sufficiently low temperatures,
the particle-hole symmetry P0 = P2 is approximately valid.

and (28). The thermal correlation 〈b̂†µb̂ν〉th can be computed from equation (22). For the
order O(1/Z)-contribution of the Pn,therm we refer to an earlier publication [41]. Expli-
citly we have (see equation (21) in [41])
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Figure 4. Maximum propagation velocity of the correlations as function of the
temperature of the initial ensemble.

Pn,therm = pn+
1

N

∑

k

∞∑

l=−∞

JTk

1+ JTkG(ωl)

[
pnG(ωl)−

(n+1)pn
ωl −Un+µ

+
npn

ωl −U(n− 1)+µ
+

n(pn−1− pn)

β(ωl −U(n− 1)+µ)2)2

− (n+1)(pn− pn+1)

β(ωl −Un+µ)2

]
(33)

with the bosonic Matsubara modes ωl = 2π i l/β.
At zero temperature, the prethermalized and the thermal value for the P0 and P2

differ roughly by a factor of 2 which has been stated elsewhere [65]. For sufficiently low
temperatures, the particle-hole symmetry is valid, P0 ∼ P2, which can be deduced from
comparing figures 5(a) and (b) or figures 5(d) and (e). The energy which is transferred
by a quench to the system becomes more and more irrelevant for increasing temperat-
ures. Thus, the difference between thermal and pre-thermalized quantities reduces with
growing T. From figures 5(c) and (f) we see how the increasing temperature diminishes
the correlations between lattice sites. However, the thermal next neighbor correlation
function has its global maximum at finite T > 0.

Within our first-order (in 1/Z) approach, we obtain the first stage of relaxation
which is also known as pre-thermalization, see, e.g. [38, 39, 43, 66–68]. This can be
understood as dephasing of the quasi-particle excitations and does not imply a real
thermalization process. True equilibration sets in on larger time scales and requires
higher-order correlation functions. In [43–46] we show that the thermalization process
can be described by taking into account correlations which are of third order in 1/Z.
Their time-evolution then leads to an effective Boltzmann equation which describes the
approach of the quasi-particle distribution functions to their thermal distribution via
two-body collisions.
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Figure 5. After a quantum quench at a temperature T, the occupation probabilities
and the correlation functions approach a prethermalized value (red curves). This
is compared with the corresponding thermal expressions (black curves). For low
temperatures, the onsite-quantities differ roughly by a factor of 2. The difference
between prethermalized and thermal values diminishes with increasing temperat-
ures. Note that deviations from the particle-hole symmetry at high temperatures
are larger in three dimensions (see (d) and (e)) than in two dimensions (see (a)
and (b)). In (c) and (f) we depict the temperature-dependence of the prethermal-
ized and thermal expectation values of the next neighbor correlations 〈b̂†µb̂ν〉. The
thermal correlation function has its global maximum at a finite temperature.
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6. Quantum quench and double-time correlations

A quantum quench changes also the light-cone structure of the double-time correlation
functions. For simplicity, we restrict our considerations to zero temperature and assume
that the system is initially in an equilibrium state with a finite hopping rate J−. At time
t =0, the hopping rate is quenched to a value J+ < Jcrit. Here the Fourier components
of the correlation functions depend on two times

〈P̂ n,n−1
µ (t)P̂m−1,m

ν (t ′)〉corr =
1

N

∑

k

fn,m
k (t, t ′)eik·(xµ−xν) . (34)

The dynamics of the correlation functions follows directly from equation (11). Neg-
lecting the back-reaction onto the on-site probabilities, the Fourier coefficients evolve
up to order 1/Z according to

i∂tf
11
k =−J±Tk(f

11
k +

√
2f 21

k )− J±Tk , (35)

i∂tf
12
k =−J±Tk(f

12
k +

√
2f 22

k ) , (36)

i∂tf
21
k =

√
2J±Tk(f

11
k +

√
2f 21

k )−Uf 21
k +

√
2J±Tk , (37)

i∂tf
22
k =

√
2J±Tk(f

12
k +

√
2f 22

k )−Uf 22
k . (38)

Similarly, we find the time-evolution w.r.t. variable t ′

i∂t ′f
11
k = J±Tk(f

11
k +

√
2f 12

k )+ J±Tk , (39)

i∂t ′f
12
k =−

√
2J±Tk(f

11
k +

√
2f 12

k )+Uf 12
k −

√
2J±Tk , (40)

i∂t ′f
21
k = J±Tk(f

21
k +

√
2f 22

k ) , (41)

i∂t ′f
22
k =−

√
2J±Tk(f

21
k +

√
2f 22

k )+Uf 22
k . (42)

For t, t ′ < 0, the correlation functions can be immediately obtained from the ground
state correlations at J = J− [38]. Due to the quantum quench, the correlation function is
not anymore homogeneous in time but depends on the relative time t− = (t− t ′)/2 and
on the central time t+ = (t+ t ′)/2. For t+± t− < 0 and t+± t− > 0 we find correlations
before and after the hopping quench, respectively. Correlations between the annihilation
(creation) of a particle before the quench and the creation (annihilation) of particle after
the quench can be obtained for t+ + t− > 0 and t+− t− < 0 (t+ + t− > 0 and t+− t− < 0).
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Figure 6. Double-time correlation function 〈b̂†µ(t)b̂ν(t ′)〉T=0 in one dimension for a
quench at t =0 from J−/U = 0.05 to J+/U = 0.15. (a): t+U = 100, the lightcone has
a kink at t− = t+ where the maximum velocity changes from vmax

++ ≈ 0.40 to vmax
+− ≈

0.24. (b): t+U =−100, the lightcone has a kink at t− =−t+ where the maximum
velocity changes from vmax

−− ≈ 0.10 to vmax
+− ≈ 0.24.

The light-cone structure is primarily determined by three different velocities. For
t, t ′ < 0, the maximum velocity vmax

−− = maxk|∇kΩ
−−
k | can be estimated from

Ω−−
k = U − J−Tk−

√
U 2− 6J−UTk+(J−Tk)2 . (43)

For t > 0 and t ′ < 0 or t < 0 and t ′ > 0, the spread is determined by both hopping
rates J− and J+. Thus we have the eigen-modes

Ω+−
k =

1

2

(
U − J−Tk−

√
U 2− 6J−UTk+(J−Tk)2

)

+
1

2

(
U − J+Tk−

√
U 2− 6J+UTk+(J+Tk)2

)
. (44)

from which one can obtain vmax
+− = maxk|∇kΩ

+−
k |. Finally, if t, t ′ > 0, the spread of

correlations is dominantly determined by J+. Here the maximum velocity vmax
++ =

maxk|∇kΩ
++
k | can be derived from

Ω++
k = U − J+Tk−

√
U 2− 6J+UTk+(J+Tk)2 . (45)

The kink in the light-cone structure due to the quantum quench is illustrated in
figure 6.

7. Conclusions

We studied equilibrium properties and non-equilibrium dynamics of the Bose–Hubbard
model in the Mott insulating phase. To this end, we extended the hierarchy for large
coordination numbers Z presented in [37] to a hierarchy for double-time correlation
functions.
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This enabled us to derive thermal correlation functions and we studied the spread
of two-time correlation functions at finite initial temperatures, see figures 1 and 2. We
restricted our considerations to first order in 1/Z which governs the free quasi-particle
evolution. As usual, the effective light-cone structure was obtained via a saddle-point
approximation.

As we demonstrated above, the dynamics of strongly interacting quantum many-
body systems and their thermal properties can be both accessed within our approach.
The phenomenon of pre-thermalization after a quantum quench was generalized from
T =0 [38] to finite temperatures, see figures 3 and 4. Note that the dynamical equations
in order O(1/Z) cover only the short-time evolution of the excitations. In order to
include the long-time evolution which is determined by quasi-particle scattering, also
higher order correlations have to be taken into account. For real thermalization pro-
cesses, for example, one has to evaluate the hierarichal equations up to order O(1/Z3)
in order to obtain a Boltzmann equation [43, 44].

Apart from these theoretical investigations, our approach can also be applied in
order to interpret experimental results. Since the double-time hierarchy induces a Green
function hierarchy, the latter can used for the interpretation of pump-probe experiments
[69]. An excitation which is created by a pump beam at time t and measured by a probe
beam at time t ′ is naturally described in terms of the lesser Green functions [10, 69, 70].
Moreover, the Green function hierarchy allows for a controlled perturbative calculation
of the self-energy or the susceptibility of strongly correlated systems.

As an outlook, the study of out-of-time-correlators, a common measure for quantum
chaos, should be feasible within our approach [71, 72]. In this context one has to extend
the double-time hierarchy of correlations to a hierarchy of multi-time correlations. This
should be possible in complete analogy to the approach presented in this work and will
be the subject of further studies.
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Appendix. Proof of the hierarchy

The most general double-time expectation value has the form 〈ÂS(t)B̂S(t ′)〉 where S
denotes the set of |S| lattice sites. In order to avoid cluttering of indices, we introduce
a short hand notation for operators which are defined on the set S via ÂS(t) = Â1

µ1
(t)×

. . .× Ân
µn
(t) and B̂S(t ′) = B̂1

µ1
(t ′)× . . .× B̂n

µn
(t ′). From the equation-of-motion hierarchy

for the expectation values 〈ÂS(t)B̂S(t ′)〉, the hierarchy for expectation values of the
form 〈Â(t)P1B̂P2(t

′)〉 can be obtained by setting S = P1 ∪P2 and choosing Âµ(t) = 1̂µ
for µ /∈ P1 and B̂ν(t ′) = 1̂ν for ν /∈ P2.

In [37], we presented a hierarchy for the correlated parts of a many-particle dens-
ity matrix based on a large coordination number Z. This hierarchy was formulated for
operators but it can also be stated in terms of correlation functions. In the follow-
ing, we will derive the corresponding hierarchy for two-time correlation functions. The

https://doi.org/10.1088/1742-5468/acccde 17

https://doi.org/10.1088/1742-5468/acccde


Hierarchy of double-time correlations

J.S
tat.

M
ech.(2023)

053101

starting point is a separation of the correlation functions in correlated and uncorrelated
parts. For better readability, we make the replacement 〈. . .〉corr → 〈. . .〉c in our notation.
General correlation functions can be separated according to

〈ÂS(t)B̂S(t
′)〉c = 〈ÂS(t)B̂S(t

′)〉−
∑

∪iPi=S,Pi⊂S

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c , (A.1)

where the sum is over all proper partitions of the set S. Note that the definition of
the correlated parts agrees with the separation of the density matrix into correlated
parts given in [37] if the operators depending on t (or t ′) are replaced by the unit
operator. As in [37] we assume that the hierarchy of correlations is valid at some time t0.
For the Bose–Hubbard system, this can be achieved by choosing initially a factorizing
Mott insulator state for J =0. The hopping rate J can then be changed to a finite
value in the insulator phase. Due to the finite Mott gap, the quantum state stays close
to the ground state during this adiabatic switching procedure. Thus, the hierarchy
of correlations is satisfied initially and remains valid during the subsequent (quench)
dynamics, see below. An analogous argument can be applied to thermal states, as long as
we are in the Mott insulating phase. Since a thermal state is an incoherent superposition
of eigenstates, one can start with a suitable incoherent superposition (ensemble) of
factorizing eigenstates at J =0, which transform into the desired thermal ensemble
after switching J adiabatically.

The central point of our derivation is the scaling hierarchy of the correlations,

〈ÂS(t)B̂S(t
′)〉c =O(Z1−|S|) . (A.2)

Rewriting the hierarchy of the density matrix from [37] in terms of expectation
values it is possible to guess the corresponding hierarchy for for the equations of motion
of 〈ÂS(t)B̂S(t ′)〉c. We claim that for a lattice Hamiltonian of the form

Ĥ =−J

Z

∑

µ,ν

TµνX̂
†
µX̂ν +

∑

µ

Ĥµ , (A.3)

the full hierarchy of correlations reads

i∂t〈ÂS(t)B̂S(t
′)〉c

=
∑

µ∈S

〈[ÂS(t), Ĥµ(t)]B̂S(t
′)〉c − J

Z

∑

µ,ν∈S

Tµν〈[ÂS(t), X̂
†
µ(t)X̂ν(t)]B̂S(t

′)〉c (A.4)

− J

Z

∑

κ/∈S

∑

µ∈S
Tµκ

{
〈X̂†

κ(t)[ÂS(t), X̂µ(t)]B̂S(t
′)〉c + 〈X̂κ(t)[ÂS(t), X̂

†
µ(t)]B̂S(t

′)〉c
}

(A.5)

− J

Z

∑

κ/∈S

∑

µ∈S

P∪P̄=S\{µ}∑

P⊆S\{µ}

Tµκ

{
〈[ÂP∪{µ}(t), X̂µ(t)]B̂P∪{µ}(t

′)〉c〈X̂†
κ(t)ÂP̄(t)B̂P̄(t

′)〉c (A.6)

+ 〈[ÂP∪{µ}(t), X̂
†
µ(t)]B̂P∪{µ}(t

′)〉c〈X̂κ(t)ÂP̄(t)B̂P̄(t
′)〉c

}
(A.7)
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− J

Z

∑

µ,ν∈S

P∪P̄=S\{µ,ν}∑

P⊆S\{µ,ν}

Tµν

{
〈[ÂP∪{µ}(t), X̂

†
µ(t)]B̂P∪{µ}(t

′)〉c〈X̂ν(t)ÂP̄∪{ν}(t)B̂P̄∪{ν}(t
′)〉c

(A.8)

+ 〈ÂP∪{µ}(t)X̂
†
µ(t)B̂P∪{µ}(t

′)〉c〈[ÂP̄∪{ν}(t), X̂ν(t)]B̂P̄∪{ν}(t
′)〉c (A.9)

−〈ÂP∪ν(t)B̂P∪ν(t
′)〉c

×
[
〈X̂†

ν(t)[ÂP̄∪{µ}(t), X̂µ(t)]B̂P̄∪{µ}(t
′)〉c + 〈X̂ν(t)[ÂP̄∪{µ}(t), X̂

†
µ(t)]B̂P̄∪{µ}(t

′)〉c

(A.10)

+
Q∪Q̄=P̄∑

Q⊆P̄

(
〈[ÂQ∪{µ}(t), X̂µ(t)]B̂Q∪{µ}(t

′)〉c〈X̂†
ν(t)ÂQ̄(t)B̂Q̄(t

′)〉c (A.11)

+ 〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c〈X̂ν(t)ÂQ̄(t)B̂Q̄(t
′)〉c

)]}
. (A.12)

Both sides of equations (A.4)–(A.12) have the same order in 1/Z. We will restrict
ourselves to bosonic systems for proving (A.4)–(A.12) by induction. For fermionic
operators, additional signs will appear due to the permutations of the operators Âµ

and B̂µ.
To begin, we assume that the hierarchy holds for all sets of lattice sites with car-

dinality strictly less then |S|. From this we will derive the equations of motion for a set
with cardinality equal to |S|. The Heisenberg equations of motion for the operator ÂS
lead to

i∂t〈ÂS(t)B̂S(t
′)〉=

∑

µ∈S

〈[ÂS(t), Ĥµ(t)]B̂S(t
′)〉

− J

Z

∑

µ,ν∈S

Tµν〈[ÂS(t), X̂
†
µ(t)X̂ν(t)]B̂S(t

′)〉

− J

Z

∑

κ/∈S

∑

µ∈S

Tµκ〈X̂†
κ(t)[ÂS(t), X̂µ(t)]B̂S(t

′)〉

− J

Z

∑

κ/∈S

∑

µ∈S

Tµκ〈X̂κ(t)[ÂS(t), X̂
†
µ(t)]B̂S(t

′)〉. (A.13)

As a next step, we separate the expectation values into correlated parts according
to (A.1). The first term can be written as
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(0) =
∑

µ∈S

〈[ÂS(t), Ĥµ(t)]B̂S(t
′)〉=

∑

P⊆S\{µ}

〈[ÂP∪{µ}(t), Ĥµ(t)]B̂P∪{µ}(t
′)〉

×
∑

∪iPi=S\P∪{µ}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c . (A.14)

The second term on the right hand side of equation (A.13) can be expanded as

− J

Z

∑

µ,ν∈S

Tµν〈[ÂS(t), X̂
†
µ(t)X̂ν(t)]B̂S(t

′)〉= (1)+ (2a)+ (2b) (A.15)

with

(1) =−J

Z

∑

µ,ν∈S

Tµν

∑

P⊆S\{µ,ν}

〈[ÂP∪{µν}(t), X̂µ(t)
†X̂ν(t)]B̂P∪{µν}(t

′)〉c

×
∑

∪iPi=S\P∪{µ,ν}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c , (A.16)

(2a)− J

Z

∑

µ,ν∈S

Tµν

∑

P⊆S\{µ,ν}




∑

∪iPi=S\P∪{µ,ν}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c





×
Q∪Q̄=P∑

Q⊆P

〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c〈X̂ν(t)ÂQ̄(t)∪{ν}(t)B̂Q̄∪{ν}(t
′)〉c , (A.17)

and

(2b) =−J

Z

∑

µ,ν∈S

Tµν

∑

P⊆S\{µ,ν}




∑

∪iPi=S\P∪{µ,ν}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c





×
Q∪Q̄=P∑

Q⊆P

〈ÂQ∪{µ}(t)X̂
†
µ(t)B̂Q∪{µ}(t

′)〉c〈[ÂQ̄∪{ν}(t), X̂ν(t)]B̂Q̄∪{ν}(t
′)〉c. (A.18)

The third term on the right hand side of equation (A.13) can be written as

− J

Z

∑

κ/∈S

∑

µ∈S

Tµκ〈X̂†
κ(t)[ÂS(t), X̂µ(t)]B̂S(t

′)〉= (3a)+ (4a) (A.19)

with

(3a) =−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ

∑

P⊆S\{µ}




∑

∪iPi=S\P∪{µ}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c





×〈X̂†
κ(t)[ÂP∪{µ}(t), X̂µ(t)]B̂P∪{µ}(t

′)〉c (A.20)

https://doi.org/10.1088/1742-5468/acccde 20

https://doi.org/10.1088/1742-5468/acccde


Hierarchy of double-time correlations

J.S
tat.

M
ech.(2023)

053101

and

(4a) =−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ

∑

P⊆S\{µ}




∑

∪iPi=S\P∪{µ}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c





×
Q∪Q̄=P∑

Q⊆P

〈[ÂQ∪{µ}(t), X̂µ(t)]B̂Q∪{µ}(t
′)〉c〈X̂†

κ(t)ÂQ̄(t)B̂Q̄(t
′)〉c . (A.21)

Similarly, for the last summand in equation (A.13) we have

− J

Z

∑

κ/∈S

∑

µ∈S

Tµκ〈X̂κ(t)[ÂS(t), X̂
†
µ(t)]B̂S(t

′)〉= (3b)+ (4b) (A.22)

with

(3b) =−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ

∑

P⊆S\{µ}




∑

∪iPi=S\P∪{µ}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c





×〈X̂κ(t)[ÂP∪{µ}(t), X̂
†
µ(t)]B̂P∪{µ}(t

′)〉c (A.23)

and

(4b) =−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ

∑

P⊆S\{µ}




∑

∪iPi=S\P∪{µ}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c





×
Q∪Q̄=P∑

Q⊆P

〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c〈X̂κ(t)ÂQ̄(t)B̂Q̄(t
′)〉c. (A.24)

We want to derive the equation of motion for the correlator 〈ÂS(t)B̂S(t ′)〉c which
was defined in equation (A.1). The equation of motion for the first term on the right
hand side of (A.1) is given by (A.14)–(A.24). The time derivative of the second term
on the right hand side in equation (A.1) reads

i∂t
∑

∪iPi=S,Pi⊂S

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c

=
∑

P⊂S

(i∂t〈ÂP(t)B̂P(t
′)〉c)

∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c . (A.25)

Note that the partitions of S contain only proper subsets of S. The induction hypo-
thesis is that the time derivative of 〈ÂP(t)B̂P(t ′)〉c can be expressed using (A.4)–(A.12)
if P is a proper subset of S. Substituting the first term in (A.4) to equation (A.25) leads
to
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(0 ′) =
∑

P⊂S\{µ}

〈[ÂP∪{µ}(t), Ĥµ(t)]B̂P∪{µ}(t
′)〉

×
∑

∪iPi=S\P∪{µ}

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c , (A.26)

which is expression (A.14) without the summand P = S \ {µ}. Therefore we find

(0)− (0 ′) =
∑

µ∈S

〈[ÂS(t), Ĥµ(t)]B̂S(t
′)〉c . (A.27)

The contribution of the second term in (A.4) to equation (A.25) gives

(1 ′) =−J

Z

∑

P⊂S

∑

µ,ν∈P

Tµν〈[ÂP(t), X̂
†
µ(t)X̂ν(t)]B̂P(t

′)〉c

×
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c. (A.28)

In equation (A.28), the term P = S is excluded from the summation, contrary to
equation (A.15), thus

(1)− (1 ′) =−J

Z

∑

µ,ν∈S

Tµν〈[ÂS(t), X̂
†
µ(t)X̂ν(t)]B̂S(t

′)〉c . (A.29)

The term (A.8) together with (A.25) leads to

(2a ′) =−J

Z

∑

P⊂S

∑

µ,ν∈P

Q∪Q̄=P\{µ,ν}∑

Q⊆P\{µ,ν}

Tµν〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c

×〈X̂ν(t)ÂQ̄∪{ν}(t)B̂Q̄∪{ν}(t
′)〉c

∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c. (A.30)

Using the same reasoning as above we find the difference

(2a)− (2a ′) =−J

Z

∑

µ,ν∈S

Q∪Q̄=S\{µ,ν}∑

Q⊆S\{µ,ν}

Tµν〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c

×〈X̂ν(t)ÂQ̄∪{ν}(t)B̂Q̄∪{ν}(t
′)〉c. (A.31)

The part (A.9) from the hierarchy together with (A.25) leads to

(2b ′) =−J

Z

∑

P⊂S

∑

µ,ν∈P

Q∪Q̄=P\{µ,ν}∑

Q⊆P\{µ,ν}

Tµν〈ÂQ∪{µ}(t)X̂
†
µ(t)B̂Q∪{µ}(t

′)〉c

×〈[ÂQ̄∪{ν}(t), X̂ν(t)]B̂Q̄∪{ν}(t
′)〉c

∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c (A.32)
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which has to be subtracted from (2b),

(2b)− (2b ′) =−J

Z

∑

µ,ν∈S

Tµν

Q∪Q̄=S\{µ,ν}∑

Q⊆S\{µ,ν}

〈ÂQ∪{µ}(t)X̂
†
µ(t)B̂Q∪{µ}(t

′)〉c

×〈[ÂQ̄∪{ν}(t), X̂ν(t)]B̂Q̄∪{ν}(t
′)〉c . (A.33)

The contribution of the first term in (A.5) to equation (A.25) leads to

(3a ′) =−J

Z

∑

P⊂S

∑

κ/∈P

∑

µ∈P

Tµκ〈X̂†
κ(t)[ÂP(t), X̂µ(t)]B̂P(t

′)〉c

×
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c (A.34)

whereas the first term of (A.10) together with (A.25) gives

(3a ′ ′) =
J

Z

∑

P⊂S

∑

µ,ν∈P

Q∪Q̄=P\{µ,ν}∑

Q⊆P\{µ,ν}

Tµν〈ÂQ∪{ν}(t)B̂Q∪{ν}(t
′)〉c

×〈X̂†
ν(t)[ÂQ̄∪{µ}(t), X̂µ(t)]B̂Q̄∪{µ}(t

′)〉c

×
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c. (A.35)

Splitting the sum over lattice sites κ according to
∑

κ/∈P =
∑

κ/∈S+
∑

κ∈S\P and sub-
tracting (3a ′) as well as (3a ′ ′) from (A.20) leads to

(3a)− (3a ′)− (3a ′ ′) =−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ〈X̂†
κ(t)[ÂS(t), X̂µ(t)]B̂S(t

′)〉c

+
J

Z

∑

µ,ν∈S

P∪P̄=S\{µ,ν}∑

P⊆S\{µ,ν}

Tµν〈ÂP∪{ν}(t)B̂P∪{ν}(t
′)〉c

×〈X̂†
ν(t)[ÂP̄∪{µ}(t), X̂µ(t)]B̂P̄∪{µ}(t

′)〉c. (A.36)

Similarly, we obtain from the second term in (A.5) the contribution

(3b ′) =−J

Z

∑

P⊂S

∑

κ/∈P

∑

µ∈P

Tµκ〈X̂κ(t)[ÂP(t), X̂
†
µ(t)]B̂P(t

′)〉c

×
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c (A.37)
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and from the second term in (A.10) we have

(3b ′ ′) =
J

Z

∑

P⊂S

∑

µ,ν∈P

Q∪Q̄=P\{µ,ν}∑

Q⊆P\{µ,ν}

Tµν〈ÂQ∪{ν}(t)B̂Q∪{ν}(t
′)〉c

×〈X̂ν(t)[ÂQ̄∪{µ}(t), X̂
†
µ(t)]B̂Q̄∪{µ}(t

′)〉c

×
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c . (A.38)

Subtracting these expressions from equation (A.23) leads to

(3b)− (3b ′)− (3b ′ ′) =−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ〈X̂κ(t)[ÂS(t), X̂
†
µ(t)]B̂S(t

′)〉c

+
J

Z

∑

µ,ν∈S

P∪P̄=S\{µ,ν}∑

P⊆S\{µ,ν}

Tµν〈ÂP∪{ν}(t)B̂P∪{ν}(t
′)〉c

×〈X̂ν(t)[ÂP̄∪{µ}(t), X̂
†
µ(t)]B̂P̄∪{µ}(t

′)〉c . (A.39)

The contribution of (A.6) gives

(4a ′) =−J

Z

∑

P⊂S

∑

κ/∈P

∑

µ∈P

Q∪Q̄=P\{µ}∑

Q⊆P\{µ}

Tµκ〈[ÂQ∪{µ}(t), X̂µ(t)]B̂Q∪{µ}(t
′)〉c

×〈X̂†
κ(t)ÂQ̄(t)B̂Q̄(t

′)〉c
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c (A.40)

whereas from (A.11) we obtain the contribution

(4a ′ ′) =
J

Z

∑

P⊂S

∑

µ,ν∈P

R∪R̄=P\{µ,ν}∑

R⊆P\{µ,ν}

Tµν〈ÂR∪{ν}(t)B̂R∪{ν}(t
′)〉c

×
Q∪Q̄=R̄∑

Q⊆R̄

〈[ÂQ∪{µ}(t), X̂µ(t)]B̂Q∪{µ}(t
′)〉c〈X̂†

ν(t)ÂQ̄(t)B̂Q̄(t
′)〉c

×
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c . (A.41)

(4a ′) and (4a ′ ′) from relation (A.21) leads to

(4a)− (4a ′)− (4a ′ ′) =−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ

P∪P̄=S\{µ}∑

P⊆S\{µ}

〈[ÂP∪{µ}(t), X̂µ(t)]B̂P∪{µ}(t
′)〉c

×〈X̂†
κ(t)ÂP̄(t)B̂P̄(t

′)〉c
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+
J

Z

∑

µν∈S

P∪P̄=S\{µ,ν}∑

P⊆S\{µ,ν}

Tµν

Q∪Q̄=P̄∑

Q⊆P̄

〈[ÂQ∪{µ}(t), X̂µ(t)]B̂Q∪{µ}(t
′)〉c

×〈X̂†
ν(t)ÂQ̄(t)B̂Q̄(t

′)〉c〈ÂP∪{ν}(t)B̂P∪{ν}(t
′)〉c. (A.42)

From (A.7) we get the term

(4b ′) =−J

Z

∑

P⊂S

∑

κ/∈P

∑

µ∈P

Q∪Q̄=P\{µ}∑

Q⊆P\{µ}

Tµκ〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c

×〈X̂κ(t)ÂQ̄(t)B̂Q̄(t
′)〉c

∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c (A.43)

and from equation (A.12) originates

(4b ′ ′) =
J

Z

∑

P⊂S

∑

µ,ν∈P

R∪R̄=P\{µ,ν}∑

R⊆P\{µ,ν}

Tµν〈ÂR∪{ν}(t)B̂R∪{ν}(t
′)〉c

×
Q∪Q̄=R̄∑

Q⊆R̄

〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c〈X̂ν(t)ÂQ̄(t)B̂Q̄(t
′)〉c

×
∑

∪iPi=S\P

∏

Pi

〈ÂPi(t)B̂Pi(t
′)〉c . (A.44)

After subtracting these terms from (A.24) we have

(4b)− (4b ′)− (4b ′ ′)

=−J

Z

∑

κ/∈S

∑

µ∈S

Tµκ

P∪P̄=S\{µ}∑

P⊆S\{µ}

〈[ÂP∪{µ}(t), X̂
†
µ(t)]B̂P∪{µ}(t

′)〉c

×〈X̂κ(t)ÂP̄(t)B̂P̄(t
′)〉c

+
J

Z

∑

µν∈S

P∪P̄=S\{µ,ν}∑

P⊆S\{µ,ν}

Tµν

Q∪Q̄=P̄∑

Q⊆P̄

〈[ÂQ∪{µ}(t), X̂
†
µ(t)]B̂Q∪{µ}(t

′)〉c

×〈X̂ν(t)ÂQ̄(t)B̂Q̄(t
′)〉c〈ÂP∪{ν}(t)B̂P∪{ν}(t

′)〉c . (A.45)

Adding the equations (A.27), (A.29), (A.31), (A.33), (A.36), (A.39), (A.42)
and (A.45) together leads to the right hand side of the hierarchy (A.4)–(A.12) for a
set with cardinality |S|. This completes the proof.
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[38] Queisser F, Krutitsky K V, Navez P and Schützhold R 2014 Equilibration and prethermalization in the Bose–
Hubbard and Fermi–Hubbard models Phys. Rev. A 89 033616
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